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ABSTRACT: A novel meta-heuristic known as Theft-gang Optimization Algorithm (TOA) is presented in this paper. The 

proposed method is based on the greedy and criminal behavior of thieves which store their expensive objects in hiding places 

and retrieve it when the objects are needed. The developed method is applied to 26 benchmarking test functions and quality 

solutions are obtained. The results obtained by TOA are compared with the results of various algorithms like Genetic 

Algorithm, Differential Evolution, Particle Swarm Optimization, Bees Algorithm and Particle Bee Algorithm. Simulation 

results reveal that using TOA may lead to finding promising results compared to the other algorithms.  
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INTRODUCTION 
As a fertile source of concepts, principles, and mechanisms, 

nature can be an inspiration to design artificial computation 

systems for solving complex computational problems. 

Evolutionary algorithms inspired by biological evolution, and 

swarm intelligence algorithms, inspired by collective animal 

behavior, are two main classes of nature inspired 

computations which have attracted more and more attentions 

during recent years. Owing to their simplicity and flexibility, 

Evolutionary algorithms have been widely applied to solve 

scientific and engineering problems and have been the most 

successful artificial computation systems to tackle complex 

computational problems [1].  

An evolutionary algorithm is a generic population based 

meta-heuristic optimization approach, trying to simulate 

some mechanisms of biological evolution. There are different 

variants of evolutionary algorithms, but the common 

underlying idea behind all these problem-solving techniques 

is the same [2].  

Success of an optimization algorithm depends mostly on its 

ability to establish good balance between exploration and 

exploitation [2]. Exploration refers to generation of new 

solutions in as yet untested regions of search space and 

exploitation means the concentration of the algorithm‟s 

search at the vicinity of current good solutions.  

For many years, human have utilized the guidance of nature 

in finding the most appropriate solution for problems. Hence, 

during the last decades, there has been a growing attempt in 

developing algorithms inspired by nature [3–5]. For example, 

Genetic algorithm was proposed by Holland [6], and 

simulates Darwnian evolution concepts. Artificial Immune 

Systems [7], simulate biological immune systems for 

optimization. Ant Colony Optimization [8] was inspired by 

behavior of ants foraging for food. Particle Swarm 

Optimization [9] mimics the social behavior of a flock of 

migrating birds trying to reach an unknown destination. 

Marriage in Honey Bee Optimization Algorithm (MBO) was 

proposed by Abbass [10], and mimics processes of 

reproduction in the honey bee colony. Bacterial Foraging 

Algorithm [11] simulates search and optimal for aging of 

bacteria. The Shuffled Frog Leaping algorithm [12] was 

inspired by a frog population searching for food. The Cat 

Swarm algorithm [13] was developed based on the behavior 

of cats. Invasive weed optimization was proposed by 

Mehrabian and Lucas [14], and mimics the ecological 

behavior of colonizing weeds. Monkey Search [15] simulates 

a monkey in search for food resources. Water flow-like 

algorithm [16] was inspired by water flowing from higher to 

lower levels. Biogeography-based optimization algorithm 

was introduced by Simon [17], and inspired by biogeography 

which refers to the study of biological organisms in terms of 

geographical distribution (over time and space). The Fish 

School Search [18] was proposed based on the gregarious 

behavior of oceanic fish. Cuckoo Search [19] and Cuckoo 

optimization algorithm [20] are based on reproduction 

strategy of cuckoos. Bat-inspired Algorithm [21] was inspired 

by the echolocation behavior of bats. Firefly algorithm [22] 

simulates the social behavior of fireflies based on their 

flashing characteristics. Dolphin Partner Optimization [23] 

and Dolphin echolocation algorithm [24] were inspired by 

dolphins' behaviors. Flower pollination algorithm [25] 

mimics the pollination characteristics of flowering plants and 

the associated flower consistency of some pollinating insects. 

Krill herd [26] inspired by the herding behavior of krill 

individuals. Wolf search [27] and Grey Wolf Optimizer [28] 

are inspired by behaviors of wolves. Water cycle algorithm 

[29] was based on the observation of water cycle process and 

how rivers and streams flow to the sea in the real world. The 

Social spider optimization, inspired by the social behavior of 

a kind of spider, has been proposed recently [30]. Forest 

Optimization Algorithm [31] was inspired by few trees in the 

forests which can survive for many years, while other trees 

could live for a short time. 

The proposed method is based on the greedy and criminal 

behavior of thieves which store their expensive objects in 

hiding places and retrieve it when the objects are needed. An 

individual with a thief‟s mentality may steal, but they are just 

as apt to lie and cheat.  The thief‟s mentality begins as a 

coping mechanism for dealing with the character flaws that 

drive them to do what they do, but it progresses from those 
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harmless, white lies to a form of deception that requires that 

generational foundation.  

The rest of this paper is organized as follows: Section 2 

provides a basic framework of the proposed TOA. 

Experimental results based on several benchmarking 

optimization test functions and comparisons with previously 

reported results are presented in Section 3. Section 4 presents 

a discussion and conclusions of the TOA. 

 

THEFT-GANG OPTIMIZATION ALGORITHM 
“To think like a thief, you have to know how a thief's mind 

works”. Generally we associate bad things with a thief but it 

is not necessary that he is a bad guy. “If you want to think 

like a thief, act like a thief”. The best way to understand how 

thieves think is to become one of them. 

From optimization point of view: the thieves are searchers, 

the environment is search space, each position of the 

environment is corresponding to a feasible solution, the cost 

of source object is objective function value (fitness) and the 

best object source of the environment is the global solution of 

the problem. 

This paper based on the above-mentioned criminal and 

greedy behaviors of thieves, a population-based meta-

heuristic algorithm, TOA, is developed. The principles of 

TOA are listed as follows: 

o Thieves live in the form of groups (gang). 

o Thieves memorize the position of their hiding places. 

o Thieves follow each other to do thievery. 

o Thieves protect their hides from being pilfered by a 

probability. 

It is assumed that there is a d-dimensional environment 

including a number of thieves. The number of thieves (gang 

size) is „N‟ and the position of thief „X‟ at time iteration „itr‟ 

in the search space is specified by a vector 

 max

, ,...,3,2,1;,...,3,2,1 itritrNXt itrX   

where ],,,,[ ,,

3

,

2

,

1

, itrX

d

itrXitrXitrXitrX ttttt  and 
maxitr

 
is the 

maximum number of iterations. Each thief has a memory in 

which the position of its hiding place is memorized. At 

iteration „itr‟, the position of hiding place of thief „X‟ is 

shown by itrX ,memory . This is the best position that thief „X‟ 

has obtained so far. Indeed, in memory of each thief the 

position of its best experience has been memorized. Thieves 

move in the environment and search for better sources 

(hiding places). 

Assume that at iteration „itr‟, thief „Y‟ wants to visit its 

hiding place, itrYmemory , . At this iteration, thief „X‟ decides 

to follow thief „Y‟ to approach to the hiding place of thief 

„Y‟. In this case, two phases may happen: 

Phase 1: Thief „Y‟ does not know that thief „X‟ is following 

it. As a result, thief „X‟ will approach to the hiding place of 

thief „Y‟. In this case, the new position of thief „X‟ is 

obtained as follows: 

)1()()tan()1,0( ,,,,1, itrXitrXitrXitrXitrX tmemorycedisrandtt 

where rand(0,1) is the random number between 0 and 1 and 
itrXcedis ,tan denotes the chasing distance of thief „X‟ at 

iteration „itr‟. 

Fig. 1 shows the geometry of the effect of chasing distance on 

the search capability. Small values of „distance‟ leads to local 

search (at the vicinity of itrXt , ) and large values results in 

global search (far from itrXt , ). As Fig. 1(a) shows, if the value 

of chasing distance is selected less than 1, the next position of 

thief X is in between itrXt ,  and itrXmemory , . As Fig. 1(b) 

indicates, if the value of „chasing distance‟ is selected more 

than 1, the next position of thief „X‟ is any position which 

may exceed itrXmemory , . 

 

 
Figure 1. Geometry of phase 1 in TOA  

Phase 2: Thief „Y ‟ knows that thief „X‟ is following it. As a 

result, in order to protect its collection from being stolen, 

thief „Y‟ will deceive thief „X‟ by going to another position of 

the search space, which is in any diverse direction. Phase 1 

and 2 can be expressed as follows:  



 



otherwisepositionrandoma

randequation
t

itrY

itre

,

1, int.prob)1,0()1(

   

(2) 

where rand(0,1) is the random number between 0 and 1 and 
itrY ,int.prob denotes the intelligent probability (int.prob) of 

thief „Y ‟ at iteration „itr‟ in the search space.  

In TOA, intensification and diversification are mainly 

controlled by the parameter of intelligent probability 

(int.prob). By decrease of the intelligent probability value, 

TOA tends to conduct the search on a local region where a 

current good solution is found in this region. As a result, 

using small values of intelligent probability, increases 

intensification. On the other hand, by increase of the 

intelligent probability value, the probability of searching the 

vicinity of current good solutions decreases and TOA tends to 

explore the search space on a global scale. As a result, use of 

large values of IP increases diversification. Figure 2 

represents flowchart of Theft-gang Optimization Algorithm. 

 
EXPERIMENTATION  
This study considered several numerical optimization 

problems from the literature to validate TOA performance. 
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This section is divided into two sub-sections. Frist section 

provides a large set of complex 12 uni-model mathematical 

benchmark problems to be tested, with results compared 

against other metaheuristic algorithms. Second section 

examines 14 multi-model mathematical benchmark problems 

to be tested, with results compared against other meta-

heuristic algorithms. 

 

Figure 2. Flowchart of Theft-gang Optimization Algorithm. 

Benchmark Test Functions 
Uni-model Test Functions 

Function Number: 1  

Function Name:   Beale 

Range:    [-4.5, 4.5] 
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Type:    Non-separable 

Test Function: 
23

211

22

211

2

211 )625.2()25.2()5.1()( xxxxxxxxxxf 

Global Optimum:  0 

 
Figure 3: Geometrical representation of Beale Function 

Function Number: 2  

Function Name:   Colville 

Range:    [-10, 10] 

Dimension:   4 

Type:    Non-separable 

Test Function: 
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Figure 4: Geometrical representation of Colville Function 

Function Number: 3  

Function Name:   Dixon-Price 

Range:    [-10, 10] 

Dimension:   30 

Type:    Non-separable 

Test Function:

 
   




D

i

ii xxixxf
2

222

1 121)(

 

 

Global Optimum:  0 

 
Figure 5: Geometrical representation of Dixon-Price Function 

Function Number: 4  

Function Name:   Easom 

Range:    [-100, 100] 

Dimension:   2 

Type:    Non-separable 

Test Function:
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Figure 6: Geometrical representation of Easom Function 

Function Number: 5  

Function Name:   Matyas 

Range:    [-10, 10] 

Dimension:   2 

Type:    Non-separable 

Test Function:
 21
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Figure 7: Geometrical representation of Matyas Function 

Function Number: 6  

Function Name:   Quartic 

Range:    [-1.28, 1.28] 

Dimension:   30 

Type:    Separable 

Test Function:
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Figure 8: Geometrical representation of Quartic Function 

Function Number: 7  

Function Name:   Schwefel 1.2 

Range:    [-100, 100] 

Dimension:   30 

Type:    Non-separable 

Test Function:
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Figure 9: Geometrical representation of Schwefel 1.2 Function 

Function Number: 8  

Function Name:   Schwefel 2.22 

Range:    [-10, 10] 

Dimension:   30 

Type:    Non-separable 

Test Function:
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Figure 10: Geometrical representation of Schwefel2.22 Function 
Function Number: 9  

Function Name:   Sphere 

Range:    [-100, 100] 

Dimension:   30 

Type:    Separable 

Test Function:
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Figure 11: Geometrical representation of Sphere Function 

Function Number: 10  

Function Name:   Step 

Range:    [-5.12, 5.12] 

Dimension:   30 

Type:    Separable 

Test Function:
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Figure 12: Geometrical representation of Step Function 

Function Number: 11  

Function Name:   Sum Sphere 

Range:    [-10, 10] 

Dimension:   30 

Type:    Separable 

Test Function:
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Figure 13: Geometrical representation of Sum Sphere Function 

Function Number: 12  

Function Name:   Zakhrov 

Range:    [-5, 10] 

Dimension:   10 

Type:    Non-separable 

Test Function:
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Figure 14: Geometrical representation of Zakhrov Function 

Multi-model Test Functions 

Function Number: 1  

Function Name:   Ackley 

Range:    [-32, 32] 

Dimension:   30 

Type:    Non-separable 

Test Function:
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Figure 15: Geometrical representation of Ackley Function 

Function Number: 2  

Function Name:   Boachevsky2 

Range:    [-100, 100] 

Dimension:   2 

Type:    Non-separable 

Test Function:
 3.0)4)(3cos(3.02)( 21
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Figure 16: Geometrical representation of Boachevsky2Function 
Function Number: 3  

Function Name:   Boachevsky3 

Range:    [-100, 100] 

Dimension:   2 

Type:    Non-separable 

Test Function:
 3.0)43cos(3.02)( 21
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Global Optimum:  0 

 
Figure 17: Geometrical representation of Boachevsky3 Function 
Function Number: 4 

Function Name:   Bohachevsky1 

Range:    [-100, 100] 

Dimension:   2 

Type:    Separable 

Test Function:
 7.0)4cos(4.0)3cos(3.02)( 21
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Figure 18: Geometrical representation of 

Bohachevsky1Function 
Function Number: 5  

Function Name:   Booth 

Range:    [-10, 10] 

Dimension:   2 

Type:    Separable 

Test Function:
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Figure 19: Geometrical representation of Booth Function 

Function Number: 6  

Function Name:   Griewank 

Range:    [-600, 600] 

Dimension:   30 

Type:    Non-separable 

Test Function:
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Figure 20: Geometrical representation of Griewank Function 

Function Number: 7  

Function Name:   Michalewicz2 

Range:    [0, π] 

Dimension:   2 

Type:    Separable 

Test Function:
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Figure 21: Geometrical representation of Michalewicz2 

Function 
Function Number: 8  

Function Name:   Michalewicz5 

Range:    [0, π] 

Dimension:   5 

Type:    Separable 

Test Function:
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Figure 22: Geometrical representation of Michalewicz5 

Function 
Function Number: 9  

Function Name:   Michalewicz10 

Range:    [0, π] 

Dimension:   10 

Type:    Separable 

Test Function:
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Figure 23: Geometrical representation of Michalewicz10 

Function 
Function Number: 10  

Function Name:   Rastrigin 

Range:    [-5.12, 5.12] 

Dimension:   30 

Type:    Separable 

Test Function:
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Figure 24: Geometrical representation of Rastrigin Function 

Function Number: 11  

Function Name:   Rosenbrock 

Range:    [-30, 30] 

Dimension:   30 

Type:    Non-separable 

Test Function:
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Figure 25: Geometrical representation of Rosenbrock Function 

Function Number: 12  

Function Name:   Schaffer 

Range:    [-100, 100] 

Dimension:   2 

Type:    Non-separable 

Test Function:
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Figure 26: Geometrical representation of Schaffer Function 

Function Number: 13  

Function Name:   Shubert 

Range:    [-10, 10] 

Dimension:   2 

Type:    Non-separable 

Test Function:
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Figure 27: Geometrical representation of Shubert Function 

Function Number: 14  

Function Name:   Six Hamp Camel Back 

Range:    [-5, 5] 

Dimension:   2 

Type:    Non-separable 

Test Function:
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Figure 28: Geometrical representation of Six Hamp Camel Back 

Function 
 

This section compares the performance of TOA to the 

performance of other meta-heuristic algorithms including 

Genetic Algorithm, Differential Evolution, Particle Swarm 

Optimization, Bees Algorithm and Particle Bee Algorithm 

[32] using 26 meta-heuristic algorithm benchmark functions 

described by Cheng and Lien [32]. Some functions are two-

dimensional; some of them are four- and five-dimensional; 

and remaining functions are 30-dimensional. All functions 

may be separated into the type categories of multi-modal/uni-

modal and separable/non-separable. 

Geometrical representation of these benchmarks is shown in 

Figs. 3–28. Cheng and Lien [32] previously conducted 

experiments on all functions with a 500,000 maximum 

number of function evaluations. They reported any value less 

than e
-12

 as 0. To maintain comparison consistency, TOA was 

also tested using these same conditions. Table 1 lists control 

and specific parameter settings for each algorithm. 
Table 1. Parameter settings of the algorithms 

GA DE PSO BA PBA TOA 

n = 50 n = 50 n = 50 n = 50 n = 50 N = 50 

m = 0.01 c = 0.9 w = 0.9–0.7 e = NP/2 e = NP/2 rd=2 

c = 0.8 F = 0.5 v = Xmin/10 ~ Xmax/10 b = NP/4 b = NP/4 IP=0.1 

g = 0.9   r = NP/4 r = NP/4  

   n1 = 2 w = 0.9–0.7  

   n2 = 1 v = Xmin/10 ~ Xmax/10  

    Pelite = 15  

    Pbest = 9  

Table 2 delineates the respective performance of TOA and 

other algorithms in solving benchmark functions. 

Performance values for all algorithms except for TOA 

reference Cheng and Lien [32]. The mean value and standard 

deviation for TOA were obtained after 30 independent runs, 
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in line with standards followed in the previous work. In Table 

2, bolded numbers represent the comparatively best values. 

TOA found the global optimum value for 24 of the 26 

functions and outperformed all other algorithms tested. 

Further, TOA was the only algorithm able to solve Dixon-

Price (function 8) and produced the best result of all on the 

exceptionally difficult Rosenbrock (function 17). 
.

 
Table 2. Comparative results of TOA with GA, DE, PSO, BA, and PBA 

No. Functions  Min GA [33] DE [33] PSO [33] BA [33] PBA [33] TOA 

1 Ackley 
Mean 

Std Dev 

0 14.67178 

0.17814 
0 

0 

0.16462 

0.49387 
0 

0 

3.12e-8 

3.98e-8 
0 

0 

2 Beale 
Mean 

Std Dev 

0 0 

0 
0 

0 
0 

0 

1.88e-5 

1.94e-5 
0 

0 
0 

0 

3 Boachevsky2 
Mean 

Std Dev 

0 0.06829 

0.07822 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 

4 Boachevsky3 
Mean 

Std Dev 

0 0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 

5 Bohachevsky1 
Mean 

Std Dev 

0 

 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 

6 Booth 
Mean 

Std Dev 

0 0 

0 
0 

0 
0 

0 

0.00053 

0.00074 
0 

0 
0 

0 

7 Colville 
Mean 

Std Dev 

0 0 

0.01949 
0 

0.01949 
0 

0 
0 

1.11760 
0 

0 
0 

0 

8 Dixon-Price 
Mean 

Std Dev 

0 1.22e+3 

2.66e+2 

0.66667 

1e-9 

0.66667 

1e-8 

0.66667 

1.16e-9 

0.66667 

5.65e-10 
0 

0 

9 Easom 
Mean 

Std Dev 

-1 -1 

0 
-1 

0 
-1 

0 

-0.99994 

4.5e-5 
-1 

0 
-1 

0 

10 Griewank 
Mean 

Std Dev 

0 10.63346 

1.16146 

0.00148 

0.00296 

0.01739 

0.02081 
0 

0 

0.00468 

0.00672 
0 

0 

11 Matyas 
Mean 

Std Dev 

0 

 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 

12 Michalewicz2 
Mean 

Std Dev 

-1.8013 

 
-1.8013 

0 
-1.8013 

0 
-1.8013 

0.11986 
-1.8013 

0 
-1.8013 

0 
-1.8013 

0 

13 Michalewicz5 
Mean 

Std Dev 

-4.6877 -4.6877 

0.09785 
-4.6877 

0.01253 
-4.6877 

0.25695 
-4.6877 

0 
-4.6877 

0 
-4.6877 

0 

14 Michalewicz10 
Mean 

Std Dev 

-9.6602 -9.49683 

0.14112 

-9.59115 

0.06421 

-4.00718 

0.50263 
-9.6602 

0 
-9.6602 

0 
-9.6602 

0 

15 Quartic 
Mean 

Std Dev 

0 0.18070 

0.02712 

0.00136 

0.00042 

0.00116 

0.00042 

1.72e-6 

1.85e-6 

0.00678 

0.00133 
7.12e-9 

1.35e-7 

16 Rastrigin 
Mean 

Std Dev 

0 52.92259 

4.56486 

11.71673 

2.53817 

43.97714 

11.72868 
0 

0 
0 

0 
0 

0 

17 Rosenbrock 
Mean 

Std Dev 

0 1.96e+5 

3.85e+4 

18.20394 

5.03619 

15.08862 

24.17019 

28.834 

0.10597 

4.2831 

5.7877 
0.84e-9 

1.86e-8 

18 Schaffer 
Mean 

Std Dev 

0 0.00424 

0.00476 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 

19 Schwefel 1.2 
Mean 

Std Dev 

0 7.40e+3 

1.14e+3 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 

20 Schwefel 2.22 
Mean 

Std Dev 

0 11.0214 

1.38686 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 

21 Shubert 
Mean 

Std Dev 

-186.73 -186.73 

0 
-186.73 

0 
-186.73 

0 
-186.73 

0 
-186.73 

0 
-186.73 

0 

22 Six Hamp Camel Back 
Mean 

Std Dev 

-1.03163 

 
-1.03163 

0 
-1.03163 

0 
-1.03163 

0 
-1.03163 

0 
-1.03163 

0 
-1.03163 

0 

23 Sphere 
Mean 

Std Dev 

0 1.11e+3 

74.21447 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

24 Step 
Mean 

Std Dev 

0 1.73e+3 

76.56145 
0 

0 
0 

0 

5.12370 

0.39209 
0 

0 
0 

0 

25 Sum Sphere 
Mean 

Std Dev 

0 1.48e+3 

12.40929 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 

26 Zakhrov 
Mean 

Std Dev 

0 0.01336 

0.00453 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 

Number of algorithm found global minimum 11 20 19 19 21 24 
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CONCLUSION 
This paper presents a new meta-heuristic algorithm called 

Theft-gang Optimization Algorithm (TOA) inspired by the 

greedy and criminal behavior of thieves which store their 

expensive objects in hiding places and retrieve it when the 

objects are needed. TOA simulated this natural pattern using 

the two strategies of thievery. Its application to sample 

problems demonstrated the ability of TOA to generate 

solutions at a quality significantly better than other 

metaheuristic algorithms. Based on mathematical benchmark 

function results, TOA precisely identified 24 of 26 

benchmark function solutions, surpassing the performance of 

GA, DE, BA, PSO, and PBA. The two phases of the TOA 

algorithm are simple to operate, with only simple 

mathematical operations to code. We thus conclude that the 

novel TOA algorithm, while robust and easy to implement, is 

able to solve various numerical optimization problems 

despite using fewer control parameters than competing 

algorithms 
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